Mutations in the human RAX homeobox gene in a patient with anophthalmia and sclerocornea.

نویسندگان

  • Vera A Voronina
  • Elena A Kozhemyakina
  • Christina M O'Kernick
  • Natan D Kahn
  • Sharon L Wenger
  • John V Linberg
  • Adele S Schneider
  • Peter H Mathers
چکیده

Anophthalmia and microphthalmia are among the most common ocular birth defects and a significant cause of congenital blindness. The etiology of anophthalmia and microphthalmia is diverse, with multiple genetic mutations associated with each of these conditions, along with potential environmental causes. Based on findings that mutations in the Rx/Rax homeobox genes in mice and fish lead to defects in retinal development and result in animal models of anophthalmia, we screened 75 individuals with anophthalmia and/or microphthalmia for mutations in the human RAX gene. We identified a single proband from this population who is a compound heterozygote for mutations in the RAX gene. This individual carries a truncated allele (Q147X) and a missense mutation (R192Q), both within the DNA-binding homeodomain of the RAX protein, and we have characterized the biochemical properties of these mutations in vitro. Parents and grandparents of the proband were found to be carriers without visible ocular defects, consistent with an autosomal recessive inheritance pattern. This is the first report of genetic mutations in the human RAX gene.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Confirmation of RAX gene involvement in human anophthalmia.

Microphthalmia and anophthalmia are at the severe end of the spectrum of abnormalities in ocular development. Mutations in several genes have been involved in syndromic and non-syndromic anophthalmia. Previously, RAX recessive mutations were implicated in a single patient with right anophthalmia, left microphthalmia and sclerocornea. In this study, we report the findings of novel compound heter...

متن کامل

Mutations in the LHX2 gene are not a frequent cause of micro/anophthalmia

PURPOSE Microphthalmia and anophthalmia are at the severe end of the spectrum of abnormalities in ocular development. A few genes (orthodenticle homeobox 2 [OTX2], retina and anterior neural fold homeobox [RAX], SRY-box 2 [SOX2], CEH10 homeodomain-containing homolog [CHX10], and growth differentiation factor 6 [GDF6]) have been implicated mainly in isolated micro/anophthalmia but causative muta...

متن کامل

RAX and anophthalmia in humans: Evidence of brain anomalies

PURPOSE To report the clinical and genetic study of two families of Egyptian origin with clinical anophthalmia. To further determine the role of the retina and anterior neural fold homeobox gene (RAX) in anophthalmia and associated cerebral malformations. METHODS Three patients with clinical anophthalmia and first-degree relatives from two consanguineous families of Egyptian origin underwent ...

متن کامل

The eyeless mouse mutation (ey1) removes an alternative start codon from the Rx/rax homeobox gene.

The eyeless inbred mouse strain ZRDCT has long served as a spontaneous model for human anophthalmia and the evolutionary reduction of eyes that has occurred in some naturally blind mammals. ZRDCT mice have orbits but lack eyes and optic tracts and have hypothalamic abnormalities. Segregation data suggest that a small number of interacting genes are responsible, including at least one major rece...

متن کامل

Anophthalmia and microphthalmia

Anophthalmia and microphthalmia describe, respectively, the absence of an eye and the presence of a small eye within the orbit. The combined birth prevalence of these conditions is up to 30 per 100,000 population, with microphthalmia reported in up to 11% of blind children. High-resolution cranial imaging, post-mortem examination and genetic studies suggest that these conditions represent a phe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 13 3  شماره 

صفحات  -

تاریخ انتشار 2004